Asymptotic Behavior of the Solutions of a Third-Order Nonlinear Differential Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of Solutions of a Third-order Nonlinear Differential Equation

Sufficient conditions are established for the boundedness of all solutions of (1.1), and we also present some sufficient conditions, which ensure that the limits of first and second order derivatives of the solutions of (1.1) tend to zero as t→∞. Our results improve and include those results obtained by previous authors ([3], [5]).

متن کامل

New Results on the Asymptotic Behavior of a Third–order Nonlinear Differential Equation

Sufficient conditions are established for the asymptotic behavior of a third-order nonlinear differential equation. Our results improve on Qian’s [C. Qian, Asymptotic behavior of a third-order nonlinear differential equation, J. Math. Anal. Appl., 284 (2003), 191–205]

متن کامل

Asymptotic Behavior of Solutions of a Third-order Nonlinear Dynamic Equation on Time Scales

In this paper, we will establish some sufficient conditions which guarantee that every solution of the third order nonlinear dynamic equation (c(t)(a(t)x(t))) + q(t)f(x(t)) = 0, t ≥ t0, oscillates or converges to zero.

متن کامل

On the Asymptotic Behavior of Solutions of Certain Third-order Nonlinear Differential Equations

where ψ ∈ C(R×R×R,R), f ∈ C(R×R,R), and p ∈ C([0,∞)×R×R×R,R). It is also supposed that the functions ψ, f , and p depend only on the arguments displayed explicitly, and the dots denote differentiation with respect to t. However, we shall require that f (0,0) = 0, the derivatives ∂ψ(x, ẋ, ẍ)/∂x ≡ ψx(x, ẋ, ẍ), ∂ψ(x, ẋ, ẍ)/∂ẍ ≡ ψẍ(x, ẋ, ẍ), and ∂ f (x, ẋ)/∂x ≡ fx(x, ẋ) exist and are continuous, an...

متن کامل

Numerical Verification of the Order of the Asymptotic Solutions of a Nonlinear Differential Equation

A perturbation method, the Lindstedt-Poincare method, is used to obtain the asymptotic expansions of the solutions of a nonlinear differential equation arising in general relativity. The asymptotic solutions contain no secular term, which overcomes a defect in Khuri’s paper. A technique of numerical order verification is applied to demonstrate that the asymptotic solutions are uniformly valid f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2018

ISSN: 1072-3374,1573-8795

DOI: 10.1007/s10958-018-3686-3